We consider the problem of classifying radar pulses given raw I/Q waveforms in the presence of noise and absence of synchronization. We also consider the problem of classifying multiple superimposed radar pulses. For both, we design deep neural networks (DNNs) that are robust to synchronization, pulse width, and SNR. Our designs yield more than 100x reduction in error-rate over the previous state-of-the-art.
翻译:我们考虑在有噪音和缺乏同步的情况下对原I/Q波形的雷达脉冲进行分类的问题。我们还考虑对多个超高压雷达脉冲进行分类的问题。我们设计了对同步、脉搏宽度和SNR都很强的深神经网络。我们的设计比前一先进技术的误差率减少100倍以上。