We introduce a new class of preconditioners to enable flexible GMRES to find a least-squares solution, and potentially the pseudoinverse solution, of large-scale sparse, asymmetric, singular, and potentially inconsistent systems. We develop the preconditioners based on a new observation that generalized inverses (i.e., $\boldsymbol{A}^{g}\in\{\boldsymbol{G}\mid\boldsymbol{A}\boldsymbol{G}\boldsymbol{A}=\boldsymbol{A}\}$) enable the preconditioned Krylov subspaces (KSP) to converge in a single step. We then compute an approximate generalized inverse (AGI) efficiently using a hybrid incomplete factorization (HIF), which combines multilevel incomplete LU with rank-revealing QR on its final Schur complement. We define the criteria of $\epsilon$-accuracy and stability of AGI to guarantee the convergence of preconditioned GMRES for consistent systems. For inconsistent systems, we fortify HIF with iterative refinement to obtain HIFIR, which effectively mitigates the potential breakdowns of KSP and allows accurate computations of the null-space vectors. By combining the two techniques, we then obtain a new solver, called PIPIT, for obtaining the pseudoinverse solutions for systems with low-dimensional null spaces. We demonstrate the robustness of HIF and HIFIR and show that they improve both accuracy and efficiency of the prior state of the art by orders of magnitude for systems with up to a million unknowns.


翻译:我们引入了新型的前提条件,使灵活GMRES能够找到最不平方的解决方案,并有可能是大规模分散、不对称、单一和可能不一致的系统等假反面解决方案。我们随后根据一种普遍反向的新观察(即$\boldsymbol{A ⁇ g ⁇ in ⁇ boldsymbol{G ⁇ bold\boldsymbol{G ⁇ boldsymbol{G ⁇ boldsymbol{A ⁇ boldsymbol{A ⁇ }$$),开发了这些先决条件,使具有先决条件的Krylov子空间(KSP)以单一步骤聚集起来。然后,我们利用一种混合的不完整系数(HIF),有效地将多级不完全的LU与最后Schur补充的QR值合并起来,我们界定了AGIG的美元准确的准确度和稳定性标准,以保证具有一致性的系统的统一性。为了不一致性的系统,我们通过对HIF系统加以强化,通过对硬性操作将KIF系统与不精确的精确的精确度进行精细化,然后将KIS的精化,从而可以使KIF的精确的系统进行升级的精确地进行升级,从而获得新的的精确的压缩。

0
下载
关闭预览

相关内容

专知会员服务
72+阅读 · 2021年5月28日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
知识图谱在可解释人工智能中的作用,附81页ppt
专知会员服务
138+阅读 · 2019年11月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
7+阅读 · 2018年8月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
7+阅读 · 2018年8月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员