To provide consistent emotional interaction with users, dialog systems should be capable to automatically select appropriate emotions for responses like humans. However, most existing works focus on rendering specified emotions in responses or empathetically respond to the emotion of users, yet the individual difference in emotion expression is overlooked. This may lead to inconsistent emotional expressions and disinterest users. To tackle this issue, we propose to equip the dialog system with personality and enable it to automatically select emotions in responses by simulating the emotion transition of humans in conversation. In detail, the emotion of the dialog system is transitioned from its preceding emotion in context. The transition is triggered by the preceding dialog context and affected by the specified personality trait. To achieve this, we first model the emotion transition in the dialog system as the variation between the preceding emotion and the response emotion in the Valence-Arousal-Dominance (VAD) emotion space. Then, we design neural networks to encode the preceding dialog context and the specified personality traits to compose the variation. Finally, the emotion for response is selected from the sum of the preceding emotion and the variation. We construct a dialog dataset with emotion and personality labels and conduct emotion prediction tasks for evaluation. Experimental results validate the effectiveness of the personality-affected emotion transition.
翻译:为了向用户提供一致的情感互动,对话系统应该能够自动选择适合的情感,以便像人类一样作出反应。然而,大多数现有工作都侧重于在用户的情绪反应中提供特定情感,或对用户的情绪作出被动反应,然而,情绪表达中的个别差异却被忽视。这可能导致情绪表达方式不一致,用户不感兴趣。为了解决这个问题,我们提议使对话系统配备个性,使其能够通过模拟人类在对话中的情感转变,自动在反应中选择情绪。详细来说,对话系统的情感是从先前的情感背景中转换出来的。转变是由前一个对话环境触发的,并受到特定个性特征的影响。为了实现这一点,我们首先将对话系统中的情感转换作为前一个情感和前一个情感-情感-振奋度-感光度(VAD)情感空间的反应情感之间的变异。然后,我们设计神经网络,以编码前一个对话背景和特定个性特征特征的变异性。最后,反应的情感是前一个情感和变异性总和。我们用情感和个性性变性变性化的图像变性变的图像数据设置一个对话数据。