The hyperedge replacement grammar (HRG) formalism is a natural and well-known generalization of context-free grammars. HRGs inherit a number of properties of context-free grammars, e.g. the pumping lemma. This lemma turns out to be a strong restriction in the hypergraph case: it implies that languages of unbounded connectivity cannot be generated by HRGs. We introduce a formalism that turns out to be more powerful than HRGs while having the same algorithmic complexity (NP-complete). Namely, we introduce hypergraph Lambek grammars; they are based on the hypergraph Lambek calculus, which may be considered as a logic of hypergraph languages. We explain the underlying principles of hypergraph Lambek grammars, establish their basic properties, and show some languages of unbounded connectivity that can be generated by them (e.g. the language of all graphs, the language of all bipartite graphs, the language of all regular graphs).
翻译:高级替代语法形式主义(HRG)是无背景语法的自然和众所周知的普遍化。 HRG继承了一些无背景语法的属性, 例如抽取的列马语。 这个列马语在高音案例中是一个很大的限制: 它意味着无限制连接的语言不能由HRG产生。 我们引入了一种形式主义, 它在具有相同的算法复杂性(NP-complete)的同时,比HRG语法更强大。 也就是说, 我们引入了高调兰博克语法; 它们基于高音兰博克语法, 它可以被视为高音语言的逻辑。 我们解释高音兰博克语法的基本原则, 确立其基本特性, 并展示一些由这些语法产生的无限制连接语言( 如所有图表的语言、所有正统图的语言、所有正统图的语言)。