The synthesis of suboptimal feedback laws for controlling nonlinear dynamics arising from semi-discretized PDEs is studied. An approach based on the State-dependent Riccati Equation (SDRE) is presented for H2 and Hinf control problems. Depending on the nonlinearity and the dimension of the resulting problem, offline, online, and hybrid offline-online alternatives to the SDRE synthesis are proposed. The hybrid offline-online SDRE method reduces to the sequential solution of Lyapunov equations, effectively enabling the computation of suboptimal feedback controls for two-dimensional PDEs. Numerical tests for the Sine-Gordon, degenerate Zeldovich, and viscous Burgers' PDEs are presented, providing a thorough experimental assessment of the proposed methodology.
翻译:研究了控制半分解的PDE产生的非线性动态的亚最佳反馈法的合成,对H2和Hinf控制问题提出了基于国家依赖Riccati Equation(SDRE)的方法,根据非线性以及由此产生的问题的范围,提出了SDRE合成的离线、在线和离线混合替代SDRE的离线性、在线和离线混合替代方法。超线混合离线SDRE方法减少至Lyapunov方程式的相继解决方案,从而能够有效地计算二维PDE的次优反馈控制。介绍了Sine-Gordon、堕落的Zeldovich和粘结的Burgers PDE的数值测试,对拟议方法进行了彻底的实验评估。