IoT devices recently are utilized to detect the state transition in the surrounding environment and then transmit the status updates to the base station for future system operations. To satisfy the stringent timeliness requirement of the status updates for the accurate system control, age of information (AoI) is introduced to quantify the freshness of the sensory data. Due to the limited computing resources, the status update can be offloaded to the mobile edge computing (MEC) server for execution to ensure the information freshness. Since the status updates generated by insufficient sensing operations may be invalid and cause additional processing time, the data sensing and processing operations need to be considered simultaneously. In this work, we formulate the joint data sensing and processing optimization problem to ensure the freshness of the status updates and reduce the energy consumption of IoT devices. Then, the formulated NP-hard problem is decomposed into the sampling, sensing and computation offloading optimization problems. Afterwards, we propose a multi-variable iterative system cost minimization algorithm to optimize the system overhead. Simulation results show the efficiency of our method in decreasing the system cost and dominance of sensing and processing under different scenarios.
翻译:最近使用IoT设备来检测周围环境的状态过渡,然后将状态更新传送给基准站,以便今后系统运行; 为满足准确系统控制状况更新的严格及时性要求,采用信息年龄(AoI)来量化感官数据的新鲜度; 由于计算资源有限,状态更新可以卸载到移动边缘计算服务器上,以确保信息新鲜度; 由于遥感操作不足产生的状态更新可能无效,并造成额外的处理时间,数据遥感和处理操作需要同时考虑; 在这项工作中,我们制定联合数据感测和处理优化问题,以确保状态更新的新鲜度,并减少IoT设备的能源消耗; 随后,已拟订的NP-硬性问题被分解到取样、感应和计算卸载优化问题中。 之后,我们提议采用多变量的迭代系统成本最小化算法,以优化系统管理。 模拟结果显示我们降低系统成本的效率,以及在不同情景下降低感测和处理的主导度。