ROS (Robot Operating System) packages have become increasingly popular as a type of software artifact that can be effectively reused in robotic software development. Indeed, finding suitable ROS packages that closely match the software's functional requirements from the vast number of available packages is a nontrivial task using current search methods. The traditional search methods for ROS packages often involve inputting keywords related to robotic tasks into general-purpose search engines or code hosting platforms to obtain approximate results of all potentially suitable ROS packages. However, the accuracy of these search methods remains relatively low because the task-related keywords may not precisely match the functionalities offered by the ROS packages. To improve the search accuracy of ROS packages, this paper presents a novel semantic-based search approach that relies on the semantic-level ROS Package Knowledge Graph (RPKG) to automatically retrieve the most suitable ROS packages. Firstly, to construct the RPKG, we employ multi-dimensional feature extraction techniques to extract semantic concepts from the dataset of ROS package text descriptions. The semantic features extracted from this process result in a substantial number of entities and relationships. Subsequently, we create a robot domain-specific small corpus and further fine-tune a pre-trained language model, BERT-ROS, to generate embeddings that effectively represent the semantics of the extracted features. These embeddings play a crucial role in facilitating semantic-level understanding and comparisons during the ROS package search process within the RPKG. Secondly, we introduce a novel semantic matching-based search algorithm that incorporates the weighted similarities of multiple features from user search queries, which searches out more accurate ROS packages than the traditional keyword search method.


翻译:暂无翻译

0
下载
关闭预览

相关内容

开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
13+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
13+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员