The Johnson-Lindenstrauss (JL) theorem states that a set of points in high-dimensional space can be embedded into a lower-dimensional space while approximately preserving pairwise distances with high probability Johnson and Lindenstrauss (1984). The standard JL theorem uses dense random matrices with Gaussian entries. However, for some applications, sparse random matrices are preferred as they allow for faster matrix-vector multiplication. I outline the constructions and proofs introduced by Achlioptas (2003) and the contemporary standard by Kane and Nelson (2014). Further, I implement and empirically compare these sparse constructions with standard Gaussian JL matrices.


翻译:Johnson-Lindenstrauss (JL) 定理指出,高维空间中的点集可以嵌入到低维空间中,同时以高概率近似保持点对距离 Johnson and Lindenstrauss (1984)。标准的 JL 定理使用具有高斯项的稠密随机矩阵。然而,在某些应用中,稀疏随机矩阵更受青睐,因为它们允许更快的矩阵-向量乘法。本文概述了 Achlioptas (2003) 提出的构造与证明方法,以及 Kane and Nelson (2014) 提出的当代标准方法。此外,本文实现了这些稀疏构造方法,并通过实验将其与标准高斯 JL 矩阵进行了比较。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
34+阅读 · 2021年6月24日
专知会员服务
50+阅读 · 2021年6月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
傅里叶变换和拉普拉斯变换的物理解释及区别
算法与数学之美
11+阅读 · 2018年2月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月29日
VIP会员
相关VIP内容
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
34+阅读 · 2021年6月24日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
傅里叶变换和拉普拉斯变换的物理解释及区别
算法与数学之美
11+阅读 · 2018年2月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员