Large language models (LLMs) and multimodal LLMs are changing event extraction (EE): prompting and generation can often produce structured outputs in zero shot or few shot settings. Yet LLM based pipelines face deployment gaps, including hallucinations under weak constraints, fragile temporal and causal linking over long contexts and across documents, and limited long horizon knowledge management within a bounded context window. We argue that EE should be viewed as a system component that provides a cognitive scaffold for LLM centered solutions. Event schemas and slot constraints create interfaces for grounding and verification; event centric structures act as controlled intermediate representations for stepwise reasoning; event links support relation aware retrieval with graph based RAG; and event stores offer updatable episodic and agent memory beyond the context window. This survey covers EE in text and multimodal settings, organizing tasks and taxonomy, tracing method evolution from rule based and neural models to instruction driven and generative frameworks, and summarizing formulations, decoding strategies, architectures, representations, datasets, and evaluation. We also review cross lingual, low resource, and domain specific settings, and highlight open challenges and future directions for reliable event centric systems. Finally, we outline open challenges and future directions that are central to the LLM era, aiming to evolve EE from static extraction into a structurally reliable, agent ready perception and memory layer for open world systems.
翻译:大语言模型(LLMs)与多模态大语言模型正在改变事件抽取(EE)领域:通过提示与生成,通常能在零样本或少样本设置下产生结构化输出。然而,基于LLM的流水线面临部署差距,包括弱约束下的幻觉问题、长上下文及跨文档场景中脆弱的时间与因果关联,以及有限上下文窗口内受限的长视野知识管理。我们认为,事件抽取应被视为一个系统组件,为以LLM为中心的解决方案提供认知支架。事件模式与槽位约束为 grounding 与验证创建了接口;以事件为中心的结构充当了逐步推理的受控中间表示;事件链接支持基于图的检索增强生成(RAG)实现关系感知检索;而事件存储则提供了超越上下文窗口的可更新情景记忆与智能体记忆。本综述涵盖了文本与多模态场景下的事件抽取,梳理了任务与分类体系,追溯了从基于规则和神经模型到指令驱动与生成框架的方法演进,并总结了问题形式化、解码策略、架构、表示、数据集与评估方法。我们还回顾了跨语言、低资源与领域特定设置,并强调了构建可靠事件中心系统所面临的开放挑战与未来方向。最后,我们概述了LLM时代核心的开放挑战与未来方向,旨在推动事件抽取从静态抽取演变为面向开放世界系统的、结构可靠且智能体就绪的感知与记忆层。