We present two main contributions which help us in leveraging the theory of graphons for modeling evolutionary processes. We show a generative model for digraphons using a finite basis of subgraphs, which is representative of biological networks with evolution by duplication. We show a simple MAP estimate on the Bayesian non parametric model using the Dirichlet Chinese restaurant process representation, with the help of a Gibbs sampling algorithm to infer the prior. Next we show an efficient implementation to do simulations on finite basis segmentations of digraphons. This implementation is used for developing fast evolutionary simulations with the help of an efficient 2-D representation of the digraphon using dynamic segment-trees with the square-root decomposition representation. We further show how this representation is flexible enough to handle changing graph nodes and can be used to also model dynamic digraphons with the help of an amortized update representation to achieve an efficient time complexity of the update at $O(\sqrt{|V|}\log{|V|})$.
翻译:我们展示了两种主要贡献,有助于我们利用图形学理论来模拟进化过程。我们展示了一种利用有限子谱基础的测算模型,它代表生物网络,通过重复演化而演化。我们展示了一种简单的巴伊西亚非参数模型估算,使用迪里赫特中国餐馆流程代表法,并在Gibbs抽样算法的帮助下推导前一种。接下来,我们展示了一种高效的运用性,以对二分法的有限分块进行模拟。我们运用这一应用,利用动态区段树和平地分块分布代表法,开发快速进化模拟。我们进一步展示了这种代表法如何足够灵活地处理变化的图形节点,并且也可以借助一个分解式更新代表法来模拟动态的测算,以便实现以$O(sqrt ⁇ V ⁇ ⁇ v ⁇ v ⁇ v ⁇ ⁇ ⁇ }($)计算的更新的高效时间复杂性。