Let $m \geq 2$ be an integer, and let $\mathbb{F}_q$ be the finite field of prime power order $q.$ Let $\mathcal{R}=\frac{\mathbb{F}_q[u]}{\langle u^2 \rangle}\times \mathbb{F}_q$ be the mixed-alphabet ring, where $\frac{\mathbb{F}_q[u]}{\langle u^2 \rangle}$ is the quasi-Galois ring with maximal ideal $\langle u\rangle$ of nilpotency index $2$ and residue field $\mathbb{F}_q.$ In this paper, we construct four infinite families of linear codes over the ring $\frac{\mathbb{F}_q[u]}{\langle u^2 \rangle}$ whose defining sets are certain non-empty subsets of $\mathcal{R}^m$ associated with three simplicial complexes of $\mathbb{F}_q^m,$ each possessing a single maximal element. We explicitly determine the parameters and Lee weight distributions of these codes. We also study their Gray images and identify several infinite families of few-weight codes over $\mathbb{F}_q,$ as well as an infinite family of minimal, near-Griesmer and distance-optimal codes over $\mathbb{F}_q.$ We also observe that their Gray images are self-orthogonal codes for $q=2$ or $3.$ We determine spanning matrices of these codes. Leveraging this result, we provide two constructions of infinite families of projective few-weight codes over $\mathbb{F}_q$ with new parameters. As an application of our newly constructed minimal codes over $\mathbb{F}_q,$ we examine the minimal access structures of Masseys secret sharing schemes based on their duals and determine the number of dictatorial participants in these schemes. Finally, we investigate the locality properties of our newly constructed projective codes and show that these codes have locality either $2$ or $3.$ As a consequence, we obtain four infinite families of $q$-ary locally repairable codes (LRCs) with locality $2,$ and two infinite families of binary LRCs with locality $3.$
翻译:设 $m \geq 2$ 为整数,$\mathbb{F}_q$ 为阶为素数幂 $q$ 的有限域。令 $\mathcal{R}=\frac{\mathbb{F}_q[u]}{\langle u^2 \rangle}\times \mathbb{F}_q$ 为混合字母环,其中 $\frac{\mathbb{F}_q[u]}{\langle u^2 \rangle}$ 是拟伽罗瓦环,其极大理想 $\langle u\rangle$ 的幂零指数为 $2$,剩余域为 $\mathbb{F}_q$。本文在环 $\frac{\mathbb{F}_q[u]}{\langle u^2 \rangle}$ 上构造了四个无限族的线性码,其定义集为 $\mathcal{R}^m$ 中与 $\mathbb{F}_q^m$ 上三个具有单个极大元的单纯复形相关的非空子集。我们明确确定了这些码的参数与Lee重量分布。同时研究了它们的Gray像,识别出 $\mathbb{F}_q$ 上的多个无限族少重量码,以及一个无限族的极小、近Griesmer且距离最优的 $\mathbb{F}_q$ 上码。我们还观察到当 $q=2$ 或 $3$ 时,它们的Gray像是自正交码。确定了这些码的生成矩阵。基于这一结果,我们给出了两个具有新参数的 $\mathbb{F}_q$ 上射影少重量码无限族的构造。作为新构造的 $\mathbb{F}_q$ 上极小码的应用,我们基于其对偶码研究了Massey秘密共享方案的极小访问结构,并确定了这些方案中专制参与者的数量。最后,我们研究了新构造射影码的局部性质,证明这些码的局部性为 $2$ 或 $3$。由此,我们得到了四个局部性为 $2$ 的 $q$ 元局部可修复码(LRC)无限族,以及两个局部性为 $3$ 的二元LRC无限族。