This paper presents a spiking neural network (SNN) accelerator made using fully open-source EDA tools, process design kit (PDK), and memory macros synthesized using OpenRAM. The chip is taped out in the 130 nm SkyWater process and integrates over 1 million synaptic weights, and offers a reprogrammable architecture. It operates at a clock speed of 40 MHz, a supply of 1.8 V, uses a PicoRV32 core for control, and occupies an area of 33.3 mm^2. The throughput of the accelerator is 48,262 images per second with a wallclock time of 20.72 us, at 56.8 GOPS/W. The spiking neurons use hysteresis to provide an adaptive threshold (i.e., a Schmitt trigger) which can reduce state instability. This results in high performing SNNs across a range of benchmarks that remain competitive with state-of-the-art, full precision SNNs. The design is open sourced and available online: https://github.com/sfmth/OpenSpike
翻译:本文展示了使用完全开放源码 EDA 工具、 进程设计包( PDK) 和使用 OpenRAM 合成的内存宏制成的螺旋神经网络加速器。 芯片在130 nm 天水进程中被胶带释放, 并整合了100多万个合成重量, 并提供了一个可重新编程的架构。 它以40兆赫的时速速度运行, 供应量为1.8 V, 使用一个 PicoRV32 核心来控制, 并占据了33.3 毫米的面积 。 加速器的输出量为48, 262 秒, 以20.72 小时的墙上时间为20. 72 。 吸附神经元使用歇斯底里来提供一个适应性阈值( 即施密特触发器), 可以减少国家的不稳定性。 这导致在一系列基准中高表现SNNSN, 并且仍然与艺术状态完全精确的 SNNSs 。 设计是开放源和可上网查阅的源: http:// github.com/ sfth/ spikkekekekekees。