The recent advances in natural language processing (NLP), have led to a new trend of applying large language models (LLMs) to real-world scenarios. While the latest LLMs are astonishingly fluent when interacting with humans, they suffer from the misinformation problem by unintentionally generating factually false statements. This can lead to harmful consequences, especially when produced within sensitive contexts, such as healthcare. Yet few previous works have focused on evaluating misinformation in the long-form (LF) generation of LLMs, especially for knowledge-intensive topics. Moreover, although LLMs have been shown to perform well in different languages, misinformation evaluation has been mostly conducted in English. To this end, we present a benchmark, CARE-MI, for evaluating LLM misinformation in: 1) a sensitive topic, specifically the maternity and infant care domain; and 2) a language other than English, namely Chinese. Most importantly, we provide an innovative paradigm for building LF generation evaluation benchmarks that can be transferred to other knowledge-intensive domains and low-resourced languages. Our proposed benchmark fills the gap between the extensive usage of LLMs and the lack of datasets for assessing the misinformation generated by these models. It contains 1,612 expert-checked questions, accompanied with human-selected references. Using our benchmark, we conduct extensive experiments and found that current Chinese LLMs are far from perfect in the topic of maternity and infant care. In an effort to minimize the reliance on human resources for performance evaluation, we offer off-the-shelf judgment models for automatically assessing the LF output of LLMs given benchmark questions. Moreover, we compare potential solutions for LF generation evaluation and provide insights for building better automated metrics.
翻译:暂无翻译