Co-adaptive guidance aims to enable efficient human-machine collaboration in visual analytics, as proposed by multiple theoretical frameworks. This paper bridges the gap between such conceptual frameworks and practical implementation by introducing an accessible model of guidance and an accompanying guidance library, mapping theory into practice. We contribute a model of system-provided guidance based on design templates and derived strategies. We instantiate the model in a library called Lotse that allows specifying guidance strategies in definition files and generates running code from them. Lotse is the first guidance library using such an approach. It supports the creation of reusable guidance strategies to retrofit existing applications with guidance and fosters the creation of general guidance strategy patterns. We demonstrate its effectiveness through first-use case studies with VA researchers of varying guidance design expertise and find that they are able to effectively and quickly implement guidance with Lotse. Further, we analyze our framework's cognitive dimensions to evaluate its expressiveness and outline a summary of open research questions for aligning guidance practice with its intricate theory.


翻译:根据多个理论框架的建议,协作指导旨在促成在视觉分析方面开展高效的人类机械协作,如多个理论框架所建议的那样。本文件通过引入一个无障碍的指导模式和一个配套的指导图书馆,将理论映射为实践,弥合这些概念框架与实际实施之间的差距。我们根据设计模板和衍生战略,贡献了一个系统提供的指导模式。我们将这一模式转录到一个名为 " Loste " 的图书馆,该图书馆允许在定义文档中具体指定指导战略,并从中生成运行代码。 Loste是第一个使用这种方法的指导图书馆。它支持制定可重复使用的指导战略,以更新现有的应用,促进创建一般指导战略模式。我们通过与具有不同指导设计专门知识的VA研究人员进行首次使用案例研究,展示其有效性,发现他们能够有效和迅速地与Rouse一起实施指导。此外,我们分析了我们的框架的认知层面,以评价其表达性,并概要介绍开放研究问题,使指导实践与其复杂理论保持一致。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Testing by Dualization
Arxiv
0+阅读 · 2022年10月3日
Arxiv
12+阅读 · 2022年4月30日
Arxiv
46+阅读 · 2021年10月4日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员