The generalized singular value decomposition (GSVD) of a matrix pair $\{A, L\}$ with $A\in\mathbb{R}^{m\times n}$ and $L\in\mathbb{R}^{p\times n}$ generalizes the singular value decomposition (SVD) of a single matrix. In this paper, we provide a new understanding of GSVD from the viewpoint of SVD, based on which we propose a new iterative method for computing nontrivial GSVD components of a large-scale matrix pair. By introducing two linear operators $\mathcal{A}$ and $\mathcal{L}$ induced by $\{A, L\}$ between two finite-dimensional Hilbert spaces and applying the theory of singular value expansion (SVE) for linear compact operators, we show that the GSVD of $\{A, L\}$ is nothing but the SVEs of $\mathcal{A}$ and $\mathcal{L}$. This result characterizes completely the structure of GSVD for any matrix pair with the same number of columns. As a direct application of this result, we generalize the standard Golub-Kahan bidiagonalization (GKB) that is a basic routine for large-scale SVD computation such that the resulting generalized GKB (gGKB) process can be used to approximate nontrivial extreme GSVD components of $\{A, L\}$, which is named the gGKB\_GSVD algorithm. We use the GSVD of $\{A, L\}$ to study several basic properties of gGKB and also provide preliminary results about convergence and accuracy of gGKB\_GSVD for GSVD computation. Numerical experiments are presented to demonstrate the effectiveness of this method.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【2022新书】数据科学的实用线性代数,328页pdf
专知会员服务
136+阅读 · 2022年9月17日
专知会员服务
22+阅读 · 2021年7月31日
专知会员服务
33+阅读 · 2021年3月7日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【2022新书】数据科学的实用线性代数,328页pdf
专知会员服务
136+阅读 · 2022年9月17日
专知会员服务
22+阅读 · 2021年7月31日
专知会员服务
33+阅读 · 2021年3月7日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员