Inspired by a width invariant defined on permutations by Guillemot and Marx, the twin-width invariant has been recently introduced by Bonnet, Kim, Thomass\'e, and Watrigant. We prove that a class of binary relational structures (that is: edge-colored partially directed graphs) has bounded twin-width if and only if it is a first-order transduction of a~proper permutation class. As a by-product, it shows that every class with bounded twin-width contains at most $2^{O(n)}$ pairwise non-isomorphic $n$-vertex graphs.
翻译:受Guillemot 和 Marx 所定义的宽度变异作用的启发, 双维变异作用最近由Bonnet、 Kim、 Thomas\'e 和 Waterrigant 引入。 我们证明, 一类二进制关系结构( 即: 边色部分定向图形 ) 已经将双维结合到双维上, 只要它是 ~ Expercer 变异类 的第一顺序转换。 作为副产品, 它显示, 每类带双维的双维( 双维) 和 Watrigant 都包含最多$2 ⁇ O( n)} 的双对称非单向的 $n- verex 图形 。