$q$-analogs of special functions, including hypergeometric functions, play a central role in mathematics and have numerous applications in physics. In the theory of probability, $q$-analogs of various probability distributions have been introduced over the years, including the binomial distribution. Here, I propose a new $q$-analog of the binomial distribution inspired by the classical noncommutative $q$-binomial theorem, where the $q$ is a formal variable in which information related to the underlying binomial experiment is encoded in its exponent.
翻译:包括超几何函数在内的特殊功能的美元等值在数学中起着中心作用,在物理学中具有许多应用。在概率理论中,多年来采用了各种概率分布的美元等值,包括二元分布。在这里,我提议在传统非交融的美元-二元理论的启发下,对二元分布采用新的美元等值。 美元是正式变量,其中与基本二元实验有关的信息被编码在其指数中。