High throughput sequencing (HTS)-based technology enables identifying and quantifying non-culturable microbial organisms in all environments. Microbial sequences have enhanced our understanding of the human microbiome, the soil and plant environment, and the marine environment. All molecular microbial data pose statistical challenges due to contamination sequences from reagents, batch effects, unequal sampling, and undetected taxa. Technical biases and heteroscedasticity have the strongest effects, but different strains across subjects and environments also make direct differential abundance testing unwieldy. We provide an introduction to a few statistical tools that can overcome some of these difficulties and demonstrate those tools on an example. We show how standard statistical methods, such as simple hierarchical mixture and topic models, can facilitate inferences on latent microbial communities. We also review some nonparametric Bayesian approaches that combine visualization and uncertainty quantification. The intersection of molecular microbial biology and statistics is an exciting new venue. Finally, we list some of the important open problems that would benefit from more careful statistical method development.


翻译:微生物序列提高了我们对人类微生物、土壤和植物环境以及海洋环境的了解。所有分子微生物数据都由于试剂污染序列、批量效应、不平等采样和未探测的分类而构成统计挑战。技术偏差和不测性具有最强的效果,但不同学科和环境的不同压力也使得直接差异丰度测试不易操作。我们介绍了一些能够克服其中一些困难并展示这些工具的统计工具。我们展示了标准统计方法,例如简单的等级混合物和专题模型,如何便利对潜在微生物群落的推断。我们还审查了将可视化和不确定性量化相结合的一些非参数性巴耶斯方法。分子微生物生物学和统计的交叉性是一个令人振奋的新地点。最后,我们列举了一些重要的公开问题,这些问题将受益于更谨慎的统计方法开发。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员