We propose to integrate weapon system features (such as weapon system manufacturer, deployment time and location, storage time and location, etc.) into a parameterized Cox-Weibull [1] reliability model via a neural network, like DeepSurv [2], to improve predictive maintenance. In parallel, we develop an alternative Bayesian model by parameterizing the Weibull parameters with a neural network and employing dropout methods such as Monte-Carlo (MC)-dropout for comparative purposes. Due to data collection procedures in weapon system testing we employ a novel interval-censored log-likelihood which incorporates Monte-Carlo Markov Chain (MCMC) [3] sampling of the Weibull parameters during gradient descent optimization. We compare classification metrics such as receiver operator curve (ROC) area under the curve (AUC), precision-recall (PR) AUC, and F scores to show our model generally outperforms traditional powerful models such as XGBoost and the current standard conditional Weibull probability density estimation model.
翻译:我们提出了一种将武器系统特征(例如武器系统制造商,部署时间和地点,存储时间和地点等)集成到参数化 Cox-Weibull[1] 可靠性模型中的方法,通过神经网络(例如 DeepSurv[2])来提高预测性维护。与此同时,我们利用神经网络对 Weibull 参数进行参数化,利用 Monte-Carlo(MC) -dropout 等去除方法开发了替代的贝叶斯模型,以进行比较目的。由于武器系统测试数据的收集程序,我们采用了一种新颖的区间截尾对数似然函数,它在梯度下降优化期间采用了蒙特卡罗马尔科夫链(MCMC)[3] 的参数采样方法。我们比较了分类指标,例如接收操作员曲线(ROC) 下的面积(AUC)、精确度、召回率(Precision-Recall) 下的面积(AUC) 和 F 值,以表明我们的模型通常优于传统的强大模型,如 XGBoost 和当前标准条件 Weibull 概率密度估计模型。