The paper introduces concepts of fairness and explainability (XAI) in artificial intelligence, oriented to solve a sophisticated business problems. For fairness, the authors discuss the bias-inducing specifics, as well as relevant mitigation methods, concluding with a set of recipes for introducing fairness in data-driven organizations. Additionally, for XAI, the authors audit specific algorithms paired with demonstrational business use-cases, discuss a plethora of techniques of explanations quality quantification and provide an overview of future research avenues.
翻译:本文介绍了人工智能中的公平和可解释性概念(XAI),旨在解决复杂的商业问题。为了公平起见,作者讨论了有偏见的诱导细节以及相关缓解方法,最后提出了一套在数据驱动组织中引入公平的方法。此外,对于XAI,作者审计了与示范商业使用案例相配的具体算法,讨论了大量解释质量量化的技术,并概述了未来研究途径。