Traditional Image Quality Assessment~(IQA) focuses on quantifying technical degradations such as noise, blur, or compression artifacts, using both full-reference and no-reference objective metrics. However, evaluation of rendering aesthetics, a growing domain relevant to photographic editing, content creation, and AI-generated imagery, remains underexplored due to the lack of datasets that reflect the inherently subjective nature of style preference. In this work, a novel benchmark dataset designed to model human aesthetic judgments of image rendering styles is introduced: the Dataset for Evaluating the Aesthetics of Rendering (DEAR). Built upon the MIT-Adobe FiveK dataset, DEAR incorporates pairwise human preference scores collected via large-scale crowdsourcing, with each image pair evaluated by 25 distinct human evaluators with a total of 13,648 of them participating overall. These annotations capture nuanced, context-sensitive aesthetic preferences, enabling the development and evaluation of models that go beyond traditional distortion-based IQA, focusing on a new task: Evaluation of Aesthetics of Rendering (EAR). The data collection pipeline is described, human voting patterns are analyzed, and multiple use cases are outlined, including style preference prediction, aesthetic benchmarking, and personalized aesthetic modeling. To the best of the authors' knowledge, DEAR is the first dataset to systematically address image aesthetics of rendering assessment grounded in subjective human preferences. A subset of 100 images with markup for them is published on HuggingFace (huggingface.co/datasets/vsevolodpl/DEAR).
翻译:传统的图像质量评估(IQA)侧重于量化噪声、模糊或压缩伪影等技术退化,采用全参考和无参考的客观度量。然而,渲染美学的评估——一个与摄影编辑、内容创作和AI生成图像日益相关的领域——由于缺乏反映风格偏好固有主观性的数据集,仍未得到充分探索。本研究引入了一个新颖的基准数据集,旨在建模人类对图像渲染风格的美学判断:用于评估渲染美学的数据集(DEAR)。该数据集基于MIT-Adobe FiveK数据集构建,通过大规模众包收集了成对的人类偏好分数,每对图像由25位不同的评估者进行评价,总计有13,648名评估者参与。这些标注捕捉了细致且上下文敏感的美学偏好,使得模型的开发和评估能够超越传统的基于失真的IQA,聚焦于一项新任务:渲染美学评估(EAR)。本文描述了数据收集流程,分析了人类投票模式,并概述了多种应用场景,包括风格偏好预测、美学基准测试和个性化美学建模。据作者所知,DEAR是首个基于人类主观偏好系统性地解决图像渲染美学评估的数据集。包含100张图像及其标注的子集已发布于HuggingFace平台(huggingface.co/datasets/vsevolodpl/DEAR)。