This work designs a novel semantic communication (SemCom) framework for the next-generation wireless network to tackle the challenges of unnecessary transmission of vast amounts that cause high bandwidth consumption, more latency, and experience with bad quality of services (QoS). In particular, these challenges hinder applications like intelligent transportation systems (ITS), metaverse, mixed reality, and the Internet of Everything, where real-time and efficient data transmission is paramount. Therefore, to reduce communication overhead and maintain the QoS of emerging applications such as metaverse, ITS, and digital twin creation, this work proposes a novel semantic communication framework. First, an intelligent semantic transmitter is designed to capture the meaningful information (e.g., the rode-side image in ITS) by designing a domain-specific Mobile Segment Anything Model (MSAM)-based mechanism to reduce the potential communication traffic while QoS remains intact. Second, the concept of generative AI is introduced for building the SemCom to reconstruct and denoise the received semantic data frame at the receiver end. In particular, the Generative Adversarial Network (GAN) mechanism is designed to maintain a superior quality reconstruction under different signal-to-noise (SNR) channel conditions. Finally, we have tested and evaluated the proposed semantic communication (SemCom) framework with the real-world 6G scenario of ITS; in particular, the base station equipped with an RGB camera and a mmWave phased array. Experimental results demonstrate the efficacy of the proposed SemCom framework by achieving high-quality reconstruction across various SNR channel conditions, resulting in 93.45% data reduction in communication.
翻译:暂无翻译