The disjunctively constrained knapsack problem consists in packing a subset of pairwisely compatible items in a capacity-constrained knapsack such that the total profit of the selected items is maximized while satisfying the knapsack capacity. DCKP has numerous applications and is however computationally challenging (NP-hard). In this work, we present a threshold search based memetic algorithm for solving the DCKP that combines the memetic framework with threshold search to find high quality solutions. Extensive computational assessments on two sets of 6340 benchmark instances in the literature demonstrate that the proposed algorithm is highly competitive compared to the state-of-the-art methods. In particular, we report 24 and 354 improved best-known results (new lower bounds) for Set I (100 instances) and for Set II (6240 instances), respectively. We analyze the key algorithmic components and shed lights on their roles for the performance of the algorithm. The code of our algorithm will be made publicly available.
翻译:具有不相容限制的 knapsack 问题在于将一组相匹配的物品包装在能力受限制的 knapsack 中,这样就可以在满足 knapsack 能力的同时使选定物品的全部利润最大化。 DCKP 有许多应用程序, 然而在计算上具有挑战性( NP- hard ) 。 在这项工作中, 我们提出了一个基于门槛的基于加密算法来解决 DCKP, 该算法将消化框架与门槛搜索相结合, 以找到高质量的解决方案。 对文献中两套6 340基准实例的广泛计算评估表明, 与最新方法相比, 拟议的算法具有高度竞争力。 特别是, 我们报告 4 和 354 改进了最著名的结果( 新的下限), 分别为 Set I ( 100 例) 和 Set II ( 6240 例 ) 。 我们分析了关键算法组成部分, 并亮亮了它们履行算法的作用 。 我们的算法代码将被公诸于众 。