Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training. The test samples can additionally contain seen categories in the generalized variant. Existing approaches rely on learning either shared or label-specific attention from the seen classes. Nevertheless, computing reliable attention maps for unseen classes during inference in a multi-label setting is still a challenge. In contrast, state-of-the-art single-label generative adversarial network (GAN) based approaches learn to directly synthesize the class-specific visual features from the corresponding class attribute embeddings. However, synthesizing multi-label features from GANs is still unexplored in the context of zero-shot setting. In this work, we introduce different fusion approaches at the attribute-level, feature-level and cross-level (across attribute and feature-levels) for synthesizing multi-label features from their corresponding multi-label class embedding. To the best of our knowledge, our work is the first to tackle the problem of multi-label feature synthesis in the (generalized) zero-shot setting. Comprehensive experiments are performed on three zero-shot image classification benchmarks: NUS-WIDE, Open Images and MS COCO. Our cross-level fusion-based generative approach outperforms the state-of-the-art on all three datasets. Furthermore, we show the generalization capabilities of our fusion approach in the zero-shot detection task on MS COCO, achieving favorable performance against existing methods. The source code is available at https://github.com/akshitac8/Generative_MLZSL.
翻译:多标签零光学习努力将图像分类为多个看不见的类别,而培训期间没有这方面的数据。测试样本还可能包含通用变量中的可见类别。现有方法依赖于从可见的分类中学习共享或标签特有的关注。然而,在多标签设置的推理过程中,计算隐蔽类的可靠关注地图仍是一项挑战。相比之下,基于最先进的单标签的单标签质对称对称网络(GAN)的方法从相应的类属性嵌入中学习直接合成特定类的视觉特征。然而,合成GANs的多标签功能在零点设置中仍然未被解析。在这项工作中,我们在属性级别、地貌层次和跨层次(跨层次属性和特征级别)上采用了不同的聚合方法,用于合成相应多标签类嵌入的多标签特征。据我们所知,我们的工作是首先解决(通用的)零点设定中多标签合成的问题。在零点设定中,ZANARS(通用的)的多标签组合特性特性特性组合,在零点设定中,全面实验是在三个属性、特级的G-SLSLSB 级别上,在现有的SLSBSBS-SBS-S-SBS-S-S-S-SB-SB-SD-S-S-SD-SD-S-SB-SB-SD-SB-SD-SD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SD-SD-SD-SD-SD-G-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SD-SD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-