Accelerating tensor applications on spatial architectures provides high performance and energy-efficiency, but requires accurate performance models for evaluating various dataflow alternatives. Such modeling relies on the notation of tensor dataflow and the formulation of performance metrics. Recent proposed compute-centric and data-centric notations describe the dataflow using imperative directives. However, these two notations are less expressive and thus lead to limited optimization opportunities and inaccurate performance models. In this paper, we propose a framework TENET that models hardware dataflow of tensor applications. We start by introducing a relation-centric notation, which formally describes the hardware dataflow for tensor computation. The relation-centric notation specifies the hardware dataflow, PE interconnection, and data assignment in a uniform manner using relations. The relation-centric notation is more expressive than the compute-centric and data-centric notations by using more sophisticated affine transformations. Another advantage of relation-centric notation is that it inherently supports accurate metrics estimation, including data reuse, bandwidth, latency, and energy. TENET computes each performance metric by counting the relations using integer set structures and operators. Overall, TENET achieves 37.4\% and 51.4\% latency reduction for CONV and GEMM kernels compared with the state-of-the-art data-centric notation by identifying more sophisticated hardware dataflows.


翻译:在空间结构中,加速的强力应用提供了高性能和高能效,但需要精确的性能模型来评价各种数据流替代物。这种模型的建模取决于对高数据流的标记和性能指标的拟订。最近提出的计算中心点和以数据为中心的标记来描述使用紧急指令进行的数据流。然而,这两个标记不那么清晰,因而导致优化机会有限和性能模型不准确。在本文中,我们提议一个框架TENET来模型推介推力应用的硬件数据流。我们首先采用一种以关系为中心的标记,正式描述用于推量的硬件数据流。以关系为中心的标记以统一的方式指定硬件数据流、PE互联和数据分配。以关系为中心的标记比使用更精密的线心和以数据为中心的说明更精密的调和以数据为中心的标记更清晰度(GE-V-R-C-CR-C-Con-C-CRal-CRentral-GE-C-C-NEQ-NE-NOL-C-C-NE-NGV-NC-NOL-C-NOL-C-NOL-NOL-C-C-C-C-NOL-C-NOL-C-C-NOL-C-NOL-C-C-C-C-C-C-NOL-C-NGNS-C-C-C-C-NOL-C-C-C-C-C-C-NOL-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
104+阅读 · 2020年7月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月2日
Arxiv
2+阅读 · 2021年6月30日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Relational Graph Attention Networks
Arxiv
3+阅读 · 2019年4月11日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员