Multilingual Language Models (MLLMs) such as mBERT, XLM, XLM-R, \textit{etc.} have emerged as a viable option for bringing the power of pretraining to a large number of languages. Given their success in zero shot transfer learning, there has emerged a large body of work in (i) building bigger MLLMs covering a large number of languages (ii) creating exhaustive benchmarks covering a wider variety of tasks and languages for evaluating MLLMs (iii) analysing the performance of MLLMs on monolingual, zero shot crosslingual and bilingual tasks (iv) understanding the universal language patterns (if any) learnt by MLLMs and (v) augmenting the (often) limited capacity of MLLMs to improve their performance on seen or even unseen languages. In this survey, we review the existing literature covering the above broad areas of research pertaining to MLLMs. Based on our survey, we recommend some promising directions of future research.
翻译:多种语言模式,如 mBERT、 XLM、 XLM-R、\ textit{etc.}等多语言模式,已成为将预培训能力带到大量语言的可行选择。鉴于在零镜头转移学习方面取得成功,在以下领域出现了大量工作:(一) 建立涵盖大量语言的更大的MLLMS(MLLM),建设涵盖大量语言的更大的MLLMS(MLLLM)(二) 为评价MLLMS建立涵盖广泛任务和语言的详尽基准;(三) 分析MLLMS在单语言、零镜头跨语言和双语任务方面的表现;(四) 了解MLLMS所学的通用语言模式(如果有的话),以及(五) 增强MLLM的有限能力,以提高其外观语言甚至看不见的语言的绩效。在这次调查中,我们审查了涉及以上与MLLMs有关的广泛研究领域的现有文献。我们根据调查建议了一些有希望的未来研究方向。