Performance issues permeate large-scale cloud service systems, which can lead to huge revenue losses. To ensure reliable performance, it's essential to accurately identify and localize these issues using service monitoring metrics. Given the complexity and scale of modern cloud systems, this task can be challenging and may require extensive expertise and resources beyond the capacity of individual humans. Some existing methods tackle this problem by analyzing each metric independently to detect anomalies. However, this could incur overwhelming alert storms that are difficult for engineers to diagnose manually. To pursue better performance, not only the temporal patterns of metrics but also the correlation between metrics (i.e., relational patterns) should be considered, which can be formulated as a multivariate metrics anomaly detection problem. However, most of the studies fall short of extracting these two types of features explicitly. Moreover, there exist some unlabeled anomalies mixed in the training data, which may hinder the detection performance. To address these limitations, we propose the Relational- Temporal Anomaly Detection Model (RTAnomaly) that combines the relational and temporal information of metrics. RTAnomaly employs a graph attention layer to learn the dependencies among metrics, which will further help pinpoint the anomalous metrics that may cause the anomaly effectively. In addition, we exploit the concept of positive unlabeled learning to address the issue of potential anomalies in the training data. To evaluate our method, we conduct experiments on a public dataset and two industrial datasets. RTAnomaly outperforms all the baseline models by achieving an average F1 score of 0.929 and Hit@3 of 0.920, demonstrating its superiority.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员