With the inclusion of smart meters, electricity load consumption data can be fetched for individual consumer buildings at high temporal resolutions. Availability of such data has made it possible to study daily load demand profiles of the households. Clustering households based on their demand profiles is one of the primary, yet a key component of such analysis. While many clustering algorithms/frameworks can be deployed to perform clustering, they usually generate very different clusters. In order to identify the best clustering results, various cluster validation indices (CVIs) have been proposed in the literature. However, it has been noticed that different CVIs often recommend different algorithms. This leads to the problem of identifying the most suitable CVI for a given dataset. Responding to the problem, this paper shows how the recommendations of validation indices are influenced by different data characteristics that might be present in a typical residential load demand dataset. Furthermore, the paper identifies the features of data that prefer/prohibit the use of a particular cluster validation index.


翻译:包含智能仪表,可以以高时间分辨率为单个消费建筑获取电力载荷消费数据。这些数据的提供使得能够研究住户每日负载需求概况。基于其需求概况的组合家庭是这种分析的主要组成部分之一,但却是关键组成部分之一。虽然可以部署许多组合算法/框架来进行分组,但它们通常产生非常不同的组群。为了确定最佳组群结果,文献中提出了各种群集验证指数(CVIs),然而,人们注意到,不同的群集验证指数(CVIs)常常建议不同的算法。这导致了为某一数据集确定最合适的 CVI的问题。针对这一问题,本文说明了验证指数的建议如何受到典型的住宅负载需求数据集中可能存在的不同数据特征的影响。此外,本文件还确定了倾向于/鼓励使用特定组群集验证指数的数据特征。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2020年10月13日
专知会员服务
40+阅读 · 2020年9月6日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
专知会员服务
62+阅读 · 2020年3月4日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年10月3日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关资讯
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员