Network meta-analysis (NMA) combines evidence from multiple trials to compare the effectiveness of a set of interventions. In public health research, interventions are often complex, made up of multiple components or features. This makes it difficult to define a common set of interventions on which to perform the analysis. One approach to this problem is component network meta-analysis (CNMA) which uses a meta-regression framework to define each intervention as a subset of components whose individual effects combine additively. In this paper, we are motivated by a systematic review of complex interventions to prevent obesity in children. Due to considerable heterogeneity across the trials, these interventions cannot be expressed as a subset of components but instead are coded against a framework of characteristic features. To analyse these data, we develop a bespoke CNMA-inspired model that allows us to identify the most important features of interventions. We define a meta-regression model with covariates on three levels: intervention, study, and follow-up time, as well as flexible interaction terms. By specifying different regression structures for trials with and without a control arm, we relax the assumption from previous CNMA models that a control arm is the absence of intervention components. Furthermore, we derive a correlation structure that accounts for trials with multiple intervention arms and multiple follow-up times. Although our model was developed for the specifics of the obesity data set, it has wider applicability to any set of complex interventions that can be coded according to a set of shared features.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员