We consider standard gradient descent, gradient flow and conjugate gradients as iterative algorithms for minimising a penalised ridge criterion in linear regression. While it is well known that conjugate gradients exhibit fast numerical convergence, the statistical properties of their iterates are more difficult to assess due to inherent non-linearities and dependencies. On the other hand, standard gradient flow is a linear method with well-known regularising properties when stopped early. By an explicit non-standard error decomposition we are able to bound the prediction error for conjugate gradient iterates by a corresponding prediction error of gradient flow at transformed iteration indices. This way, the risk along the entire regularisation path of conjugate gradient iterations can be compared to that for regularisation paths of standard linear methods like gradient flow and ridge regression. In particular, the oracle conjugate gradient iterate shares the optimality properties of the gradient flow and ridge regression oracles up to a constant factor. Numerical examples show the similarity of the regularisation paths in practice.


翻译:我们考虑将标准梯度下降、梯度流和共轭梯度作为线性回归中最小化惩罚性岭准则的迭代算法。尽管共轭梯度以其快速的数值收敛性而广为人知,但由于其固有的非线性和依赖性,其迭代的统计特性较难评估。另一方面,标准梯度流是一种线性方法,在提前停止时具有众所周知的正则化特性。通过一种显式的非标准误差分解,我们能够将共轭梯度迭代的预测误差,以梯度流在变换后的迭代索引处的相应预测误差为界。通过这种方式,共轭梯度迭代整个正则化路径上的风险,可以与标准线性方法(如梯度流和岭回归)的正则化路径风险进行比较。特别地,最优共轭梯度迭代与梯度流和岭回归最优解具有相同的优化特性,仅相差一个常数因子。数值示例展示了实践中正则化路径的相似性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员