Massive multiple-input and multiple-output (MIMO) enables ultra-high throughput and low latency for tile-based adaptive virtual reality (VR) 360 video transmission in wireless network. In this paper, we consider a massive MIMO system where multiple users in a single-cell theater watch an identical VR 360 video. Based on tile prediction, base station (BS) deliveries the tiles in predicted field of view (FoV) to users. By introducing practical supplementary transmission for missing tiles and unacceptable VR sickness, we propose the first stable transmission scheme for VR video. we formulate an integer non-linear programming (INLP) problem to maximize users' average quality of experience (QoE) score. Moreover, we derive the achievable spectral efficiency (SE) expression of predictive tile groups and the approximately achievable SE expression of missing tile groups, respectively. Analytically, the overall throughput is related to the number of tile groups and the length of pilot sequences. By exploiting the relationship between the structure of viewport tiles and SE expression, we propose a multi-lattice multi-stream grouping method aimed at improving the overall throughput for VR video transmission. Moreover, we analyze the relationship between QoE objective and number of predictive tile. We transform the original INLP problem into an integer linear programming problem by setting the predictive tiles groups as some constants. With variable relaxation and recovery, we obtain the optimal average QoE. Extensive simulation results validate that the proposed algorithm effectively improves QoE.
翻译:大型多输入和多输出( MIMO) 能够实现超高的模拟传输和低延缓度, 用于无线网络中基于瓷质的适应性虚拟现实( VR) 360 视频传输。 在本文中, 我们考虑的是大型的 MIMO 系统, 使单细胞剧院的多用户观看相同的 VR 360 视频。 根据瓷器预测, 基站( BS) 向用户发送预测视野领域( FoV) 中的瓷砖块。 通过为缺失的瓷砖和不可接受的 VR 疾病引入实用的补充传输, 我们提出了VR VR 视频的第一个稳定传输计划。 我们制定了一个全非线性非线性虚拟虚拟程序( INLP) 问题, 以最大限度地提高用户平均经验质量( QE Q) 。 此外, 我们从可实现的光谱效率( SE) 组表达出可实现的可实现的光谱效率, 以及失踪的磁质组表示。 分析, 总体输送量与最小质组数组数和试验序列的长度序列。 通过利用视图结构结构结构和SE, 我们提出一个透视图图分析 。