Nowadays, with increase in ageing population, Health care market keeps growing. There is a need for monitoring of Health issues. Body Area Network consists of wireless sensors attached on or inside human body for monitoring vital Health related problems e.g, Electro Cardiogram (ECG), ElectroEncephalogram (EEG), ElectronyStagmography(ENG) etc. Data is recorded by sensors and is sent towards Health care center. Due to life threatening situations, timely sending of data is essential. For data to reach Health care center, there must be a proper way of sending data through reliable connection and with minimum delay. In this paper transmission delay of different paths, through which data is sent from sensor to Health care center over heterogeneous multi-hop wireless channel is analyzed. Data of medical related diseases is sent through three different paths. In all three paths, data from sensors first reaches ZigBee, which is the common link in all three paths. After ZigBee there are three available networks, through which data is sent. Wireless Local Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunication System (UMTS) are connected with ZigBee. Each network (WLAN, WiMAX, UMTS) is setup according to environmental conditions, suitability of device and availability of structure for that device. Data from these networks is sent to IP-Cloud, which is further connected to Health care center. Main aim of this paper is to calculate delay of each link in each path over multihop wireless channel.


翻译:目前,随着人口老龄化的增加,保健市场不断增长,需要监测保健问题。身体区域网络由无线传感器组成,用于监测与健康有关的重大问题,例如,电心、电脑图、电脑图等。数据由传感器记录,并送往保健中心。由于生命受到威胁的情况,必须及时发送数据。要到达保健中心,就必须有适当的方式通过可靠的连接和尽可能短的延迟发送数据。在这个不同路径的纸质传输延迟中,数据从感应器通过多速无线频道传送到保健中心。医疗相关疾病的数据通过三个不同路径发送。在所有三个路径中,传感器的数据先到达ZigBeee,这是所有三种路径的共同链接。由于ZigBeee有三种可用网络,数据通过这些网络发送数据。无线局域网、全球微波存取互通(WIMAX)、通用移动电信链接每个频道,每个网络的可连接度是VIMTS,每个网络的可连接性。

0
下载
关闭预览

相关内容

Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
19+阅读 · 2018年6月27日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
3+阅读 · 2018年3月28日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员