The Depth-Image-Based-Rendering (DIBR) is one of the main fundamental technique to generate new views in 3D video applications, such as Multi-View Videos (MVV), Free-Viewpoint Videos (FVV) and Virtual Reality (VR). However, the quality assessment of DIBR-synthesized views is quite different from the traditional 2D images/videos. In recent years, several efforts have been made towards this topic, but there {is a lack of} detailed survey in {the} literature. In this paper, we provide a comprehensive survey on various current approaches for DIBR-synthesized views. The current accessible datasets of DIBR-synthesized views are firstly reviewed{, followed} by a summary analysis of the representative state-of-the-art objective metrics. Then, the performances of different objective metrics are evaluated and discussed on all available datasets. Finally, we discuss the potential challenges and suggest possible directions for future research.


翻译:在3D视频应用程序中产生新观点的主要基本技术之一,如多视视频、自由视视频和虚拟现实(VR)。然而,对DIBR合成观点的质量评估与传统的2D图像/视频有很大不同。近年来,为这一专题作出了一些努力,但{在}文献中缺乏详细调查}。在本文件中,我们全面调查了目前对DIBR合成观点采取的各种做法。目前可获取的DIBR合成观点数据集首先经过审查,随后对具有代表性的2D图像/视频进行了简要分析。随后,对所有可用数据集的不同目标指标的绩效进行了评估和讨论。最后,我们讨论了潜在的挑战,并提出了未来研究的可能方向。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
ICLR2019 review结果出炉
专知
3+阅读 · 2018年11月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
13+阅读 · 2020年8月3日
Arxiv
20+阅读 · 2020年6月8日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
ICLR2019 review结果出炉
专知
3+阅读 · 2018年11月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员