Let A,B be matrices in SL(2,R) having trace greater than or equal to 2. Assume the pair A,B is coherently oriented, that is, can be conjugated to a pair having nonnegative entries. Assume also that either A,B^(-1) is coherently oriented as well, or A,B have integer entries. Then the Lagarias-Wang finiteness conjecture holds for the set {A,B}, with optimal product in {A,B,AB,A^2B,AB^2}. In particular, it holds for every matrix pair in SL(2,Z>=0).
翻译:让 A, B 在跟踪大于或等于 2. 2 的 SL (2, R) 中成为矩阵。 假设对 A, B 具有一致方向, 也就是说, 可以和对有非负性条目的对相相相相融合。 假设 A, B (1) 和 A 都具有一致方向, 或者 A, B 有整数条目 。 然后, Lagaris- Wang 的有限性猜想为 {A, B, AB, A% 2B, AB} 持有成套 {A, B, AB} 的最佳产品 。 特别是, 它为 SL (2, ⁇ 0 ) 中的每一对矩阵都持有 。