The increasing need for economic, safe, and sustainable smart manufacturing combined with novel technological enablers, has paved the way for Artificial Intelligence (AI) and Big Data in support of smart manufacturing. This implies a substantial integration of AI, Industrial Internet of Things (IIoT), Robotics, Big data, Blockchain, 5G communications, in support of smart manufacturing and the dynamical processes in modern industries. In this paper, we provide a comprehensive overview of different aspects of AI and Big Data in Industry 4.0 with a particular focus on key applications, techniques, the concepts involved, key enabling technologies, challenges, and research perspective towards deployment of Industry 5.0. In detail, we highlight and analyze how the duo of AI and Big Data is helping in different applications of Industry 4.0. We also highlight key challenges in a successful deployment of AI and Big Data methods in smart industries with a particular emphasis on data-related issues, such as availability, bias, auditing, management, interpretability, communication, and different adversarial attacks and security issues. In a nutshell, we have explored the significance of AI and Big data towards Industry 4.0 applications through panoramic reviews and discussions. We believe, this work will provide a baseline for future research in the domain.


翻译:对经济、安全和可持续智能制造的日益需求,加上新的技术促进因素,为人工智能和大数据支持智能制造铺平了道路,这意味着将AI、物业工业互联网(IIoT)、机器人、大数据、链链、5G通信进行大量整合,以支持智能制造和现代工业的动态过程。在本文件中,我们全面概述了AI和大数据工业4.0的不同方面,特别侧重于关键应用、技术、所涉概念、关键赋能技术、挑战和研究视角,以部署工业5.0。我们详细强调并分析AI和大数据对工业的不同应用有何帮助。我们还着重指出了在智能工业成功应用AI和大数据方法方面面临的主要挑战,特别强调与数据有关的问题,如可得性、偏差、审计、管理、解释性、通信以及不同的对抗性攻击和安全问题。我们从一个坚果中探讨了AI和大数据对工业4.0应用的重要性。我们通过全局审查和讨论来探讨和讨论,为未来研究领域提供一个基线。我们相信,这项工作将为未来研究提供基础。

0
下载
关闭预览

相关内容

从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员