The spread in the use of tracking systems in sport has made fine-grained spatiotemporal analysis a primary focus of an emerging sports analytics industry. Recently publicized tracking data for men's professional tennis allows for the first detailed spatial analysis of return impact. Mixture models are an appealing model-based framework for spatial analysis in sport, where latent variable discovery is often of primary interest. Although finite mixture models have the advantages of interpretability and scalability, most implementations assume standard parametric distributions for outcomes conditioned on latent variables. In this paper, we present a more flexible alternative that allows the latent conditional distribution to be a mixed member of finite Gaussian mixtures. Our model was motivated by our efforts to describe common styles of return impact location of professional tennis players and is the reason we name the approach a 'latent style allocation' model. In a fully Bayesian implementation, we apply the model to 142,803 return points played by 141 top players at Association of Tennis Professional events between 2018 and 2020 and show that the latent style allocation improves predictive performance over a finite Gaussian mixture model and identifies six unique impact styles on the first and second serve return.
翻译:体育中跟踪系统的推广使得微小的时空分析成为新兴体育分析行业的主要焦点。最近公布的男性专业网球跟踪数据为首次详细空间分析回报影响提供了最新的男性专业网球跟踪数据。混合模型是体育空间分析的具有吸引力的模型框架,在体育中,潜伏变量发现往往是主要兴趣所在。虽然有限的混合模型具有可解释性和可缩放性的好处,但大多数实施模型都以潜在变量为条件,对成果的标准参数分布进行标准参数分布。在本文中,我们提出了一个更灵活的替代方案,允许潜在有条件分布成为定额高斯混合物的混合成员。我们模型的动机是努力描述专业网球运动员返回影响的共同类型,因此我们把这一方法命名为“陈列式分配模式”模型。在全面实施巴伊西亚时,我们将模型应用到141个顶级球员在2018至2020年之间在Tenis专业事件上扮演的142 803个回报点,并显示潜值样式分配提高了对有限高斯混合混合物混合物的预测性表现。