We study the lattice agreement (LA) and atomic snapshot problems in asynchronous message-passing systems where up to $f$ nodes may crash. Our main result is a crash-tolerant atomic snapshot algorithm with \textit{amortized constant round complexity}. To the best of our knowledge, the best prior result is given by Delporte et al. [TPDS, 18] with amortized $O(n)$ complexity if there are more scans than updates. Our algorithm achieves amortized constant round if there are $\Omega(\sqrt{k})$ operations, where $k$ is the number of actual failures in an execution and is bounded by $f$. Moreover, when there is no failure, our algorithm has $O(1)$ round complexity unconditionally. To achieve amortized constant round complexity, we devise a simple \textit{early-stopping} lattice agreement algorithm and use it to "order" the update and scan operations for our snapshot object. Our LA algorithm has $O(\sqrt{k})$ round complexity. It is the first early-stopping LA algorithm in asynchronous systems.
翻译:我们最了解的是,我们研究的是无序传递信息系统中的拉蒂协定(LA)和原子快照问题,这些系统高达美元节点,可能会崩溃。我们的主要结果是以\ textit{amortized continual complication}来进行崩溃容忍原子快照算法的算法。据我们所知,最好的先前结果是由Delporte et al. [TPDS, 18] 以摊合美元(n) 复杂度来进行,如果有比更新更多的扫描。如果有美元(sqrt{k}),我们的算法可以实现摊合不变的常态操作。如果有美元(sqrt{k}) 操作,那么我们的算法可以实现摊合不变的 美元(n) 。我们的LA算法在一次执行中实际失败的次数,并且被美元绑定。此外,如果没有失败,我们的算法是无条件的。为了实现摊合的常态复杂度,我们设计了一个简单的拖蒂协议算法,并用它来“顺序”更新和扫描我们的快照对象的操作。我们的第一个系统是早期的。