Uncalibrated photometric stereo (UPS) is challenging due to the inherent ambiguity brought by the unknown light. Although the ambiguity is alleviated on non-Lambertian objects, the problem is still difficult to solve for more general objects with complex shapes introducing irregular shadows and general materials with complex reflectance like anisotropic reflectance. To exploit cues from shadow and reflectance to solve UPS and improve performance on general materials, we propose DANI-Net, an inverse rendering framework with differentiable shadow handling and anisotropic reflectance modeling. Unlike most previous methods that use non-differentiable shadow maps and assume isotropic material, our network benefits from cues of shadow and anisotropic reflectance through two differentiable paths. Experiments on multiple real-world datasets demonstrate our superior and robust performance.
翻译:未校准光度立体(UPS)因未知光线带来的固有歧义而具有挑战性。尽管与非兰伯特物体相比,非均质阴影和复杂反射的一般材料如各向异性反射等更通用的物体形状仍然难以处理。为了利用阴影和反射提示来解决UPS并提高对于一般材料的性能,我们提出了DANI-Net,这是一种具有可区分化阴影处理和各向异性反射建模的反向渲染框架。与大多数先前使用不可分化阴影图并假定为各向同性材料的方法不同,我们的网络通过两个可区分化的路径从阴影和各向异性反射提示中受益。在多个现实数据集上的实验验证了我们卓越和稳健的性能。