Predicting the nonlinear evolution of cosmic structure from initial conditions is typically approached using Lagrangian, particle-based methods. These techniques excel in terms of tracking individual trajectories, but they might not be suitable for applications where point-based information is unavailable or impractical. In this work, we explore an alternative, field-based approach using Eulerian inputs. Specifically, we developed an autoencoder architecture based on a generative adversarial network (GAN) and trained it to evolve density fields drawn from dark matter N-body simulations. We tested this method on both 2D and 3D data. We find that while predictions on 2D density maps perform well based on density alone, accurate 3D predictions require the inclusion of associated velocity fields. Our results demonstrate the potential of field-based representations to model cosmic structure evolution, offering a complementary path to Lagrangian methods in contexts where field-level data is more accessible.


翻译:从初始条件预测宇宙结构的非线性演化通常采用基于拉格朗日描述的粒子方法。这类技术在追踪单个轨迹方面表现优异,但在基于点的信息无法获取或不切实际的应用场景中可能并不适用。本研究探索了一种基于欧拉描述的场论替代方法。具体而言,我们开发了一种基于生成对抗网络的自编码器架构,并训练其演化从暗物质N体模拟中提取的密度场。我们在二维和三维数据上对该方法进行了测试。研究发现,虽然仅基于密度的二维密度图预测效果良好,但精确的三维预测需要纳入相关的速度场。我们的结果表明,在场级数据更易获取的背景下,基于场的表示方法在模拟宇宙结构演化方面具有潜力,为拉格朗日方法提供了一条互补的路径。

0
下载
关闭预览

相关内容

【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
40+阅读 · 2022年2月28日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
54+阅读 · 2020年12月1日
专知会员服务
18+阅读 · 2020年10月18日
【NeurIPS 2020】融入BERT到并行序列模型
专知会员服务
26+阅读 · 2020年10月15日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
Arxiv
0+阅读 · 2025年12月31日
VIP会员
相关VIP内容
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
40+阅读 · 2022年2月28日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
54+阅读 · 2020年12月1日
专知会员服务
18+阅读 · 2020年10月18日
【NeurIPS 2020】融入BERT到并行序列模型
专知会员服务
26+阅读 · 2020年10月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员