Estimating environmental exposures from multi-source data is central to public health research and policy. Integrating data from satellite products and ground monitors are increasingly used to produce exposure surfaces. However, spatio-temporal misalignment often induced from missing data introduces substantial uncertainty and reduces predictive accuracy. We propose a Bayesian weighted predictor regression framework that models spatio-temporal relationships when predictors are observed on irregular supports or have substantial missing data, and are not concurrent with the outcome. The key feature of our model is a spatio-temporal kernel that aggregates the predictor over local space-time neighborhoods, built directly into the likelihood, eliminating any separate gap-filling or forced data alignment stage. We introduce a numerical approximation using a Voronoi-based spatial quadrature combined with irregular temporal increments for estimation under data missingness and misalignment. We showed that misspecification of the spatial and temporal lags induced bias in the mean and parameter estimates, indicating the need for principled parameter selection. Simulation studies confirmed these findings, where careful tuning was critical to control bias and achieve accurate prediction, while the proposed quadrature performed well under severe missingness. As an illustrative application, we estimated fine particulate matter (PM$_{2.5}$) in northern California using satellite-derived aerosol optical depth (AOD) and wildfire smoke plume indicators. Relative to a traditional collocated linear model, our approach improved out-of-sample predictive performance, reduced uncertainty, and yielded robust temporal predictions and spatial surface estimation. Our framework is extensible to additional spatio-temporally varying covariates and other kernel families.


翻译:从多源数据中估计环境暴露是公共卫生研究与政策制定的核心任务。整合卫星产品和地面监测数据以生成暴露面正得到日益广泛的应用。然而,由数据缺失引起的时空错位常带来显著不确定性并降低预测精度。本文提出一种贝叶斯加权预测回归框架,该框架可在预测变量观测支撑不规则、存在大量缺失数据且与结果变量非同步观测的情况下建模时空关系。模型的核心特征是嵌入似然函数的时空核函数,该函数通过局部时空邻域聚合预测变量,从而无需单独的填补缺失或强制数据对齐步骤。我们引入了一种基于Voronoi图的空间求积法与不规则时间增量相结合的数值近似方法,用于处理数据缺失和错位情况下的参数估计。研究表明,时空滞后项的误设会导致均值与参数估计产生偏差,这凸显了进行规范化参数选择的必要性。模拟实验证实了这些发现,其中精细的参数调校对控制偏差和实现准确预测至关重要,而所提出的求积法在严重数据缺失情况下表现良好。作为示例应用,我们利用卫星反演的气溶胶光学厚度(AOD)和野火烟雾羽流指标估算了北加州的细颗粒物(PM$_{2.5}$)浓度。相较于传统的共位线性模型,本方法提升了样本外预测性能,降低了不确定性,并实现了稳健的时间预测与空间表面估计。该框架可扩展至其他时空变化协变量及不同核函数族。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【AAAI2023】面向领域自适应语义分割的几何感知网络
专知会员服务
21+阅读 · 2022年12月7日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
33+阅读 · 2021年2月27日
时空数据挖掘:综述
专知
34+阅读 · 2022年6月30日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
CVPR 2019:精确目标检测的不确定边界框回归
AI科技评论
13+阅读 · 2019年9月16日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
时空数据挖掘:综述
专知
34+阅读 · 2022年6月30日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
CVPR 2019:精确目标检测的不确定边界框回归
AI科技评论
13+阅读 · 2019年9月16日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员