This paper proposes PolyProtect, a method for protecting the sensitive face embeddings that are used to represent people's faces in neural-network-based face verification systems. PolyProtect transforms a face embedding to a more secure template, using a mapping based on multivariate polynomials parameterised by user-specific coefficients and exponents. In this work, PolyProtect is evaluated on two open-source face recognition systems in a cooperative-user mobile face verification context, under the toughest threat model that assumes a fully-informed attacker with complete knowledge of the system and all its parameters. Results indicate that PolyProtect can be tuned to achieve a satisfactory trade-off between the recognition accuracy of the PolyProtected face verification system and the irreversibility of the PolyProtected templates. Furthermore, PolyProtected templates are shown to be effectively unlinkable, especially if the user-specific parameters employed in the PolyProtect mapping are selected in a non-naive manner. The evaluation is conducted using practical methodologies with tangible results, to present realistic insight into the method's robustness as a face embedding protection scheme in practice. This work is fully reproducible using the publicly available code at: https://gitlab.idiap.ch/bob/bob.paper.polyprotect_2021.


翻译:本文提出“ 聚合保护”, 这是一种用于保护敏感面部嵌入在神经网络上基于面部验证系统中代表人们面部的敏感面部嵌入方法。 聚合保护将面部嵌入到一个更安全的模板中, 使用基于多变量多元面部验证系统的映射, 由用户特定系数和引言方来进行 。 在这项工作中, 在合作用户移动面部验证的背景下, 对两个开放源面部识别系统进行“ 聚合保护” 评估, 使用最严酷的威胁模型, 假设一个完全知情且对系统及其所有参数完全了解的攻击者。 结果显示, 聚合保护可以调整面部验证系统的识别准确性与“ 多元保护” 的不可逆转性之间实现令人满意的交易。 此外, 聚合保护模板被证明是实际上无法连接的, 特别是如果聚源面20 移动脸部映射中使用的用户特定参数是以非惯用方式选择的。 评估是使用具有有形结果的实用方法进行的, 以对方法进行现实的洞察了解, 并展示方法的精准性洞察度 。 / 将这一方法作为公开的套装/ 。 。 正在完全地 将 将 将 正在 将 将 进行 将 进行 将 将 进行 将 进行 将 将 将 将 将 将 进行 将 将 进行 进行 进行 将 进行 进行 将 将 进行 进行 进行 进行 进行 将 进行 将 将 将 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
32+阅读 · 2021年6月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Prefix-Free Coding for LQG Control
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员