Deepfake videos, generated through AI faceswapping techniques, have garnered considerable attention due to their potential for powerful impersonation attacks. While existing research primarily focuses on binary classification to discern between real and fake videos, however determining the specific generation model for a fake video is crucial for forensic investigation. Addressing this gap, this paper investigates the model attribution problem of Deepfake videos from a recently proposed dataset, Deepfakes from Different Models (DFDM), derived from various Autoencoder models. The dataset comprises 6,450 Deepfake videos generated by five distinct models with variations in encoder, decoder, intermediate layer, input resolution, and compression ratio. This study formulates Deepfakes model attribution as a multiclass classification task, proposing a segment of VGG19 as a feature extraction backbone, known for its effectiveness in imagerelated tasks, while integrated a Capsule Network with a Spatio-Temporal attention mechanism. The Capsule module captures intricate hierarchies among features for robust identification of deepfake attributes. Additionally, the video-level fusion technique leverages temporal attention mechanisms to handle concatenated feature vectors, capitalizing on inherent temporal dependencies in deepfake videos. By aggregating insights across frames, our model gains a comprehensive understanding of video content, resulting in more precise predictions. Experimental results on the deepfake benchmark dataset (DFDM) demonstrate the efficacy of our proposed method, achieving up to a 4% improvement in accurately categorizing deepfake videos compared to baseline models while demanding fewer computational resources.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员