Virtual Reality (VR) technology is being advanced along the lines of enhancing its immersiveness, enabling multiuser Virtual Experiences (VEs), and supporting unconstrained mobility of the users in their VEs, while constraining them within specialized VR setups through Redirected Walking (RDW). For meeting the extreme data-rate and latency requirements of future VR systems, supporting wireless networking infrastructures will operate in millimeter Wave (mmWave) frequencies and leverage highly directional communication in both transmission and reception through beamforming and beamsteering. We propose to leverage predictive context-awareness for optimizing transmitter and receiver-side beamforming and beamsteering. In particular, we argue that short-term prediction of users' lateral movements in multiuser VR setups with RDW can be utilized for optimizing transmitter-side beamforming and beamsteering through Line-of-Sight (LoS) "tracking" in the users' directions. At the same time, short-term prediction of orientational movements can be used for receiver-side beamforming for coverage flexibility enhancements. We target two open problems in predicting these two context information instances: i) lateral movement prediction in multiuser VR settings with RDW and ii) generation of synthetic head rotation datasets to be utilized in the training of existing orientational movements predictors. We follow by experimentally showing that Long Short-Term Memory (LSTM) networks feature promising accuracy in predicting lateral movements, as well as that context-awareness stemming from VEs further benefits this accuracy. Second, we show that a TimeGAN-based approach for orientational data generation can generate synthetic samples closely matching the experimentally obtained ones.


翻译:虚拟现实 (VR) 技术正在朝着增强其沉浸感、实现多用户虚拟体验、支持用户在虚拟环境中的不受限制的移动(通过重定向行走技术来在专用 VR 布置中限制其范围)方向发展。为满足未来 VR 系统的极端数据速率和延迟要求,无线网络基础设施将运行在毫米波 (mmWave) 频率上,并通过波束成型和波束导航实现高度指向性的传输和接收。我们提出利用预测性上下文感知技术来优化发射机和接收机的波束成型和波束导航。具体而言,我们认为在带有重定向行走技术的多用户 VR 布置中,用户的横向运动的短期预测可以被用于通过用户方向的直线视距(LoS)“跟踪”来优化发射机的波束成型和波束导航。同时,定向运动的短期预测也可以用于接收机端的波束成型,从而增强覆盖范围的灵活性。我们针对两个预测这两个上下文信息实例的开放性问题:i) 多用户 VR 设置下的横向运动预测和 ii) 生成用于培训现有定向运动预测器的合成头部转动数据集。实验表明,长短时记忆(LSTM)网络具有预测横向运动的良好准确性,而虚拟环境所带来的上下文感知性进一步提高了准确性。其次,我们还展示了基于 TimeGAN 的方法可生成与实验数据接近的合成样本。

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
31+阅读 · 2022年2月15日
VIP会员
相关VIP内容
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员