We present two new recovery-based a posteriori error estimates for the Hellan--Herrmann--Johnson method in Kirchhoff--Love plate theory. The first error estimator uses a postprocessed deflection and controls the $L^2$ moment error and the discrete $H^2$ deflection error. The second one controls the $L^2\times H^1$ total error and utilizes superconvergent postprocessed moment field and deflection. The effectiveness of the theoretical results is numerically validated in several experiments.


翻译:我们在Kirchhoff-Love板块理论中为Hellan-Hermann-Johnson方法提出了两个基于回收的事后误差估计数。第一个误差估计器使用后处理偏转法,控制了2美元时速误差和2美元偏转误差。第二个误差控制了$L2/times H1美元的总误差,并使用了超一致后处理时空字段和偏转法。理论结果的有效性在若干实验中得到了数字验证。

0
下载
关闭预览

相关内容

专知会员服务
91+阅读 · 2021年6月3日
专知会员服务
74+阅读 · 2020年8月25日
已删除
将门创投
4+阅读 · 2020年1月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2020年1月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员