Exploring an unknown environment without colliding with obstacles is one of the essentials of autonomous vehicles to perform diverse missions such as structural inspections, rescues, deliveries, and so forth. Therefore, unmanned aerial vehicles (UAVs), which are fast, agile, and have high degrees of freedom, have been widely used. However, previous approaches have two limitations: a) First, they may not be appropriate for exploring large-scale environments because they mainly depend on random sampling-based path planning that causes unnecessary movements. b) Second, they assume the pose estimation is accurate enough, which is the most critical factor in obtaining an accurate map. In this paper, to explore and map unknown large-scale environments rapidly and accurately, we propose a novel exploration method that combines the pre-calculated Peacock Trajectory with graph-based global exploration and active loop-closing. Because the two-step trajectory that considers the kinodynamics of UAVs is used, obstacle avoidance is guaranteed in the receding-horizon manner. In addition, local exploration that considers the frontier and global exploration based on the graph maximizes the speed of exploration by minimizing unnecessary revisiting. In addition, by actively closing the loop based on the likelihood, pose estimation performance is improved. The proposed method's performance is verified by exploring 3D simulation environments in comparison with the state-of-the-art methods. Finally, the proposed approach is validated in a real-world experiment.


翻译:探索未知环境而不与障碍相冲突是自治车辆执行结构检查、救援、运送等不同任务的基本条件之一,因此,无人驾驶飞行器(无人驾驶飞行器)迅速、灵活和高度自由,已被广泛使用。然而,以往的做法有两个局限性:(a) 首先,它们可能不适合探索大型环境,因为它们主要依赖随机抽样规划,造成不必要移动的随机抽样路径规划;(b) 其次,它们假定构成估计足够准确,这是获得准确地图的最关键因素。在本文件中,为了迅速准确地探索和绘制未知的大型环境,我们提议一种新的探索方法,将预先计算出的孔雀雀轨与基于图表的全球探索和积极的环圈闭式相结合。由于使用两步轨道来考虑无人驾驶飞行器的动力动力,因此难以避免出现不必要的移动。此外,根据图表考虑前沿和全球探索的最关键因素是最大限度地加快探索速度,尽量减少不必要地进行实验的进度,同时通过模拟模拟,通过积极关闭最终的模拟方式,使拟议进行的业绩得到更新。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年5月5日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年5月5日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
Top
微信扫码咨询专知VIP会员