We propose mixed finite element methods for Cosserat materials that use suitable quadrature rules to eliminate the Cauchy and coupled stress variables locally. The reduced system consists of only the displacement and rotation variables. Four variants are proposed for which we show stability and convergence using a priori estimates. Numerical experiments verify the theoretical findings and higher order convergence is observed in some variables.


翻译:本文针对Cosserat材料提出了混合有限元方法,通过采用适当的数值积分规则在局部消除Cauchy应力与耦合应力变量。简化后的系统仅包含位移与旋转变量。我们提出了四种变体方法,并利用先验估计证明了其稳定性与收敛性。数值实验验证了理论结果,并在部分变量中观测到了高阶收敛现象。

0
下载
关闭预览

相关内容

【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【ICML2024】变分薛定谔扩散模型
专知会员服务
20+阅读 · 2024年5月11日
【NeurIPS2022】几何知识蒸馏:图神经网络的拓扑压缩
专知会员服务
25+阅读 · 2022年11月9日
《常微分方程》笔记,419页pdf
专知会员服务
76+阅读 · 2020年8月2日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【ICML2024】变分薛定谔扩散模型
专知会员服务
20+阅读 · 2024年5月11日
【NeurIPS2022】几何知识蒸馏:图神经网络的拓扑压缩
专知会员服务
25+阅读 · 2022年11月9日
《常微分方程》笔记,419页pdf
专知会员服务
76+阅读 · 2020年8月2日
相关资讯
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员