In this paper, we present a novel approach for continuous operator authentication in teleoperated robotic processes based on Hidden Markov Models (HMM). While HMMs were originally developed and widely used in speech recognition, they have shown great performance in human motion and activity modeling. We make an analogy between human language and teleoperated robotic processes (i.e. words are analogous to a teleoperator's gestures, sentences are analogous to the entire teleoperated task or process) and implement HMMs to model the teleoperated task. To test the continuous authentication performance of the proposed method, we conducted two sets of analyses. We built a virtual reality (VR) experimental environment using a commodity VR headset (HTC Vive) and haptic feedback enabled controller (Sensable PHANToM Omni) to simulate a real teleoperated task. An experimental study with 10 subjects was then conducted. We also performed simulated continuous operator authentication by using the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS). The performance of the model was evaluated based on the continuous (real-time) operator authentication accuracy as well as resistance to a simulated impersonation attack. The results suggest that the proposed method is able to achieve 70% (VR experiment) and 81% (JIGSAW dataset) continuous classification accuracy with as short as a 1-second sample window. It is also capable of detecting the impersonation attack in real-time.


翻译:在本文中,我们介绍了基于隐藏Markov 模型(HMMM)的远程操作机器人流程中连续操作者认证操作者持续操作者持续认证的新做法。虽然HMM公司最初是开发并广泛用于语音识别,但HMM公司在人文运动和活动模型中表现得非常出色。我们将人文和远程操作机器人流程(即词类类似于远程操作者的手势,句类比整个远程操作任务或流程)之间的类比,并采用HMMM公司模拟远程操作任务。为了测试拟议方法的持续认证性能,我们进行了两套分析。我们建立了虚拟现实(VR)实验环境,我们使用一种商品VR头(HTC Viveve)和不便反馈使控制器(Sensable PHANToM Omni)能够模拟真正的远程操作任务。随后进行了10个主题的实验性研究,我们还使用JHUHU-ISI Gestur和Skill Asir Supid Serview 任务。模型的性评估性评估性根据连续(实时) 实时(实时) 实时) 实时操作操作者认证结果和持续操作操作者认证结果建议,将81ABIAVADR的准确性认证作为模拟数据作为模拟数据作为模拟的模拟方法,作为模拟数据。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
14+阅读 · 2021年5月21日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【TED】同情心的进化论
英语演讲视频每日一推
3+阅读 · 2017年8月16日
Arxiv
3+阅读 · 2018年10月8日
Arxiv
5+阅读 · 2018年5月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【TED】同情心的进化论
英语演讲视频每日一推
3+阅读 · 2017年8月16日
Top
微信扫码咨询专知VIP会员