The early identification and intervention of latent depression are of significant societal importance for mental health governance. While current automated detection methods based on social media have shown progress, their decision-making processes often lack a clinically interpretable framework, particularly in capturing the duration and dynamic evolution of depressive symptoms. To address this, this study introduces a semantic parsing network integrated with multi-scale temporal prototype learning. The model detects depressive states by capturing temporal patterns and semantic prototypes in users' emotional expression, providing a duration-aware interpretation of underlying symptoms. Validated on a large-scale social media dataset, the model outperforms existing state-of-the-art methods. Analytical results indicate that the model can identify emotional expression patterns not systematically documented in traditional survey-based approaches, such as sustained narratives expressing admiration for an "alternative life." Further user evaluation demonstrates the model's superior interpretability compared to baseline methods. This research contributes a structurally transparent, clinically aligned framework for depression detection in social media to the information systems literature. In practice, the model can generate dynamic emotional profiles for social platform users, assisting in the targeted allocation of mental health support resources.
翻译:潜在抑郁的早期识别与干预对心理健康治理具有重要的社会意义。当前基于社交媒体的自动化检测方法虽已取得进展,但其决策过程往往缺乏临床可解释性框架,尤其在捕捉抑郁症状的持续时长与动态演变方面存在不足。为此,本研究提出一种融合多尺度时序原型学习的语义解析网络。该模型通过捕捉用户情感表达中的时序模式与语义原型来检测抑郁状态,为潜在症状提供具有时长感知能力的解释。在大规模社交媒体数据集上的验证表明,该模型性能优于现有最先进方法。分析结果显示,该模型能够识别传统基于问卷调查方法中未系统记录的情感表达模式,例如持续表达对“替代性人生”向往的叙述性内容。进一步的用户评估证明,相较于基线方法,该模型具有更优的可解释性。本研究为信息系统领域贡献了一个结构透明、与临床实践相契合的社交媒体抑郁检测框架。在实际应用中,该模型可为社交平台用户生成动态情感画像,辅助心理健康支持资源的精准配置。