Combining motion prediction and motion planning offers a promising framework for enhancing interactions between automated vehicles and other traffic participants. However, this introduces challenges in conditioning predictions on navigation goals and ensuring stable, kinematically feasible trajectories. Addressing the former challenge, this paper investigates the extension of attention-based motion prediction models with navigation information. By integrating the ego vehicle's intended route and goal pose into the model architecture, we bridge the gap between multi-agent motion prediction and goal-based motion planning. We propose and evaluate several architectural navigation integration strategies to our model on the nuPlan dataset. Our results demonstrate the potential of prediction-driven motion planning, highlighting how navigation information can enhance both prediction and planning tasks. Our implementation is at: https://github.com/KIT-MRT/future-motion.
翻译:将运动预测与运动规划相结合,为增强自动驾驶车辆与其他交通参与者之间的交互提供了一个有前景的框架。然而,这带来了在导航目标上调节预测以及确保稳定、运动学可行的轨迹方面的挑战。针对前一个挑战,本文研究了将导航信息集成到基于注意力的运动预测模型中的扩展方法。通过将自车的预期路径和目标姿态整合到模型架构中,我们弥合了多智能体运动预测与基于目标的运动规划之间的差距。我们在nuPlan数据集上提出并评估了针对我们模型的几种架构导航集成策略。我们的结果展示了预测驱动运动规划的潜力,突显了导航信息如何能同时增强预测和规划任务。我们的实现位于:https://github.com/KIT-MRT/future-motion。