The abstract issue of 'Krylov solvability' is extensively discussed for the inverse problem $Af = g$ where $A$ is a (possibly unbounded) linear operator on an infinite-dimensional Hilbert space, and $g$ is a datum in the range of $A$. The question consists of whether the solution $f$ can be approximated in the Hilbert norm by finite linear combinations of $g, Ag, A^2 g, \dots$ , and whether solutions of this sort exist and are unique. After revisiting the known picture when $A$ is bounded, we study the general case of a densely defined and closed $A$. Intrinsic operator-theoretic mechanisms are identified that guarantee or prevent Krylov solvability, with new features arising due to the unboundedness. Such mechanisms are checked in the self-adjoint case, where Krylov solvability is also proved by conjugate-gradient-based techniques.
翻译:“ Krylov solivable” 的抽象问题在反问题($Af = g$)中得到了广泛讨论,因为美元是无限维度Hilbert 空间上一个(可能没有约束的)线性操作员的(可能没有约束的)美元,而美元是美元范围以美元为基准。 问题在于,在Hilbert 规范中,能否用美元、 Ag 、 A2 g 、\dots 的有限线性组合来比喻“ 美元” 的解决方案,以及这类解决方案是否存在且具有独特性。在重新审视已知的美元被约束时,我们研究了一个高度定义和封闭的美元的一般案例。 发现“ 动态操作者理论” 机制可以保证或防止 Krylov 的可移动性, 其新特征产生于无约束性。 这种机制在自我连接的案例中受到检查, Krylov solvavable 也通过基于同位技术加以证明。